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Blind Image Quality Assessment Using Statistical
Structural and Luminance Features

Qiaohong Li, Weisi Lin, Fellow, IEEE, Jingtao Xu, Member, IEEE, and Yuming Fang

Abstract—Blind image quality assessment (BIQA) aims to
develop quantitative measures to automatically and accurately
estimate perceptual image quality without any prior information
about the reference image. In this paper, we introduce a novel
BIQA metric by structural and luminance information, based
on the characteristics of human visual perception for distorted
image. We extract the perceptual structural features of distorted
image by the local binary pattern distribution. Besides, the
distribution of normalized luminance magnitudes is extracted
to represent the luminance changes in distorted image. After
extracting the features for structures and luminance, support
vector regression is adopted to model the complex nonlinear
relationship from feature space to quality measure. The proposed
BIQA model is called no-reference quality assessment using
statistical structural and luminance features (NRSL). Extensive
experiments conducted on four synthetically distorted image
databases and three naturally distorted image databases have
demonstrated that the proposed NRSL metric compares favorably
with the relevant state-of-the-art BIQA models in terms of high
correlation with human subjective ratings. The MATLAB source
code and validation results of NRSL are publicly online at
http://www.ntu.edu.sg/home/wslin/Publications.htm.

Index Terms—Blind image quality assessment (BIQA), human
visual system (HVS), no-reference (NR), structural distortion.

1. INTRODUCTION

IGITAL images are subject to a broad spectrum of dis-
D tortions during the process of acquisition, compression,
transmission and reproduction. Therefore, it is essential to guar-
antee the quality of image content for end-users. Subjective
viewing test is a natural way to evaluate visual image quality.
Despite of its high accuracy and reliability, subjective eval-
uation is cumbersome, expensive, time consuming, and non-
reproducible, which makes it difficult to be embedded into
practical applications such as real-time quality monitoring and
prediction [1], [2].
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Objective image quality assessment (IQA) metrics which pre-
dict perceptual image quality using computational models serve
as an effective substitute of subjective methods and are desir-
able in a wide range of image processing and computer vision
applications. For example, there are different device parame-
ters for digital cameras which can be tuned according to image
quality [3]; image compression algorithms may use quality as
the optimization guidance for quantization [4], [5]; image trans-
mission systems can monitor quality and allocate streaming
resources accordingly [6], and image recommendation systems
can rank photos based on perceptual quality measure [7].

The investigations into objective IQA have led to considerable
progress in the development of perceptual IQA metrics. Existing
objective IQA methods can be classified as full-reference (FR),
reduced-reference (RR) and no-reference (NR) methods based
on the available information of original reference images [1],
[2]. Most IQA models fall under the category of FR algorithms,
where reference images are available for quality prediction. The
mean squared error (MSE) and its corresponding peak signal-
to-noise ration (PSNR) are the simplest and most widely used
FR metrics due to their efficient computation and clear physical
meanings. However, they are not in high agreement with human
perceptual quality [1]. In the past decades, to overcome the
drawbacks of these traditional metrics, various perceptual FR-
IQA metrics have been proposed, such as SSIM [8], VIF [9],
ADM [10], FSIM [11] and GMS [12]. For RR-IQA, partial
information of reference images in the form of extracted features
is required for quality evaluation [13], [14]. However, when
reference image is not available as in most practical applications
(e.g., transmission, denoising, enhancement), NR/Blind IQA
(BIQA) would be the only possible solution to seek.

Early BIQA methods are mainly developed to evaluate per-
ceptual quality of images distorted in a specific image pro-
cessing application, such as Gaussian white noise (WN) [15],
JPEG2000 (JP2K) compression [16], Gaussian blur (GB) [17]
and contrast change [18]. The design of such distortion-specific
BIQA model can be achieved by the priori knowledge about
the corresponding distortion characteristics. A NR method for
JPEG compressed images has been proposed by calculating
between-block differences and in-block activities in spatial do-
main [19]. The quality of blurred images has been quantified
by the average edge spread [20]. In [21], the pixel distor-
tions and edge features are used to characterize the quality
of JP2K compressed images. Recently, several statistical de-
scriptors of image luminance distribution are adopted to gauge
image contrast distortion [18]. Since distortion-specific BIQA
methods are developed for given distortion types, their prac-
tical usage to other applications is limited. On the contrary,
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general purpose BIQA methods that require no access to both
reference image and distortion type can be used in various
scenarios.

General purpose BIQA mainly consists of two broad ways.
One is distance-based methods, which are also termed as
opinion-unaware methods, as there is no need for subjective
scores during the model design process. Generally, natural scene
statistics (NSS) [22], [23] or perceptual features [23] are ex-
tracted from pristine natural images and used to build a clean
image model. The quality of distorted image is calculated as the
distance between test image features and the built clean image
model [22], [23]. In [24], the authors propose to use objective
scores obtained by FR-IQA metric as a substitute of subjective
scores to train BIQA models. The other category is learning
based models. Specifically, quality aware features are extracted
from distorted images and then a regression model is learned
to map these extracted features to the final quality score. This
kind of BIQA methods is also termed as opinion-aware methods
since subjective scores are required during the learning process.
The choice of quality aware features is the determinant factor to
the success of learning based BIQA methods. A good set of NR
features should be some perceptually relevant features that are
sensitive to a broad range of image distortion types and robust to
image content variation. The most popular features adopted by
BIQA methods are NSS features. These features are constructed
based on the assumption that natural images are statistically reg-
ular and distortions tend to break such statistics and make the
images unnatural. Thus, image quality can be quantized as image
unnaturalness. BIQA methods based on DCT domain NSS [25],
spatial domain NSS [22], [26], wavelet domain NSS [27], [28]
and hybrid domain NSS (combination of curvelet, DCT and
several types of wavelet transform) [29] have been proposed
and achieve promising performance in visual quality prediction.
Another kind of features used by learning based methods are
perceptual features. The gradient and phase congruency features
are extracted from distorted image to assess image quality [30].
In[31], alarge number of low level features, texture statistics and
noise/blur estimates are combined with multiple support vector
regression (SVR) to build the LBIQ metric. In [32], the joint
statistics of image gradients and Laplacian of Gaussian (LOG)
responses are employed as quality aware features. A combi-
nation of free energy principle based features and spatial NSS
features has shown some impressive results in [33]. The third
kind of learning based methods directly use raw local image
patches as the input and learn the quality aware representation
in an unsupervised [34] or supervised [35] way. Commonly
adopted regression modules in learning based methods include
neural network [30], SVR [26], [28], [32] and random forest
regression [36].

Despite the prominent improvement in development of BIQA
methods recently, the performance of existing methods still lags
behind that of FR-IQA methods. BIQA is an intrinsically chal-
lenging task due to the diverse distortion types and wide range
of image content. There is still much room for the perfor-
mance improvement before they are applied for practical ap-
plications. Moreover, most existing BIQA methods suffer from
some limitations. As one of the pioneering BIQA methods,
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BIQI generally gives poor performance for visual quality pre-
diction due to its simplistic feature extraction [27]. In DI-
IVINE [28], the used large number of features extracted
from multi-subbands in wavelet domain slows down the
method greatly. Similarly, the block-based GGD fitting in
DCT domain makes BLIINDS2 difficult to predict the vi-
sual quality in real time [25]. Feature learning based methods,
CORNIA [34] and QAF [36], inevitably require a large size
codebook and result in high-dimension global quality aware
features. Although GMLOG delivers promising performance
on singly-distorted image database, its performance deteriorates
considerably when tested on multiply-distorted images [37].
The combination of several RR and FR methods adopted by
NFERM [33] leads to a too complicated method to be used
in practice.

In this study, we develop a BIQA model by investigating
the characteristics of human visual perception. Existing studies
show that image structures covey the primary visual information
of a scene, and the HVS is highly adapted to extract structural
information for image perception and understanding [38], [39].
Here, we propose a novel effective structural feature extraction
method as the spatial distribution of local binary pattern (LBP)
based on the normalized luminance map to characterize the
image structural information. Also, studies from neuroscience
have demonstrated that the HVS is highly sensitive to lumi-
nance change of a scene, which might also cause visible distor-
tion [40], [41]. Based on these findings, we extract a new feature
to represent luminance changes in the proposed metric. After
extracting the statistical structural and luminance features, we
use SVR to model the complex nonlinear relationship between
extracted features and human subjective ratings. Experimental
results show that NRSL can achieve better performance than the
relevant existing methods.

In sum, the main contribution of this study lies in three folds:
first, by exploring the characteristics of the HVS, two new per-
ceptual features are extracted to represent the structural infor-
mation and luminance changes in distorted image, respectively.
We demonstrate that complementary information provided by
extracted statistical structural and luminance features plays an
important role for image quality estimation. Second, we propose
a novel perceptual BIQA metric for visual quality prediction.
The proposed metric can consistently handle both synthetically-
distorted and naturally-distorted images than other BIQA
methods. Previous BIQA methods are mostly designed and
validated on databases of images with simulated distortions.
Their performance deteriorates when tested on images with
realistic distortions. By contrast, the proposed method can
achieve consistently better performance on both simulated and
realistic distortions. Furthermore, the proposed method has
the advantages of high prediction accuracy, high generaliza-
tion ability, low computational complexity and low feature
dimension.

The remainder of this paper is organized as follows. In
Section II, we describe the proposed NRSL metric based on the
analysis of image structural and normalized luminance informa-
tion. In Section III, we compare our method with relevant state-
of-the-art IQA metrics on four synthetically-distorted image
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Fig. 1. Block diagram of proposed NRSL model.

databases and three authentically-distorted image databases.
Section IV concludes the paper.

II. NRSL FOR BIQA

In this section, we describe the proposed NRSL metric in
details. NRSL is designed by accounting for both structural and
luminance degradation. Fig. 1 shows the framework of the pro-
posed metric. First, the contrast normalization scheme is applied
to the image to remove redundancy in the visual input. Second,
the LBP descriptor is employed on the normalized image to
extract the structural features. Furthermore, the distribution of
normalized luminance magnitudes in the form of histogram is
extracted from the same normalized image. Both structural and
luminance features are calculated at three scales to account
for the variation in viewing distance and image resolution. Fi-
nally, the extracted statistical structural and luminance features
are combined together as the input to SVR to simulate the
nonlinear mapping from feature space to subjective quality
scores.

A. Local Contrast Normalization

Local contrast normalization has been used as a preprocessing
stage to emulate the nonlinear masking of visual perception in
many image processing applicaitons [42]. Generally, each coef-
ficient is divided by the square root of Gaussian weighted com-
bination of the squared amplitudes of its neighbors. In this study,
similar preprocessing model as [22], [26] has been adopted

I(i,j) = e (1)

where ¢ and j are the spatial indices of the image, and

K
Z Zwklf i+ kK, j+1)

w(i,j) = (2)

o (i,j) = I(i+k,j+1)—p(ij)

2

3)

are the local mean and standard deviation of the surrounding lo-
cal patch, where w = {wy, |k = —K, ..., K,l = —L, ..., L} de-
fines a unit-volume Gaussian window. And the constant C' is
induced to guarantee numerical stability when the denominators
are close to zero. Specifically, we choose

C = (aL)? “)
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where L is the dynamic range of pixel grayscale levels (255 for
8-bit grayscale image), and o < 1 is a small constant.

B. The Structural Histogram

Natural images are highly structured with the manifestation
of strong dependencies among their pixels. When these pix-
els are spatially neighboring, these high dependencies often
carry important information about the structure of visual ob-
jects in natural scenes [8]. Image structures covey the primary
visual information of a scene, and the HVS adaptively evolves
to extract structural information for image perception and un-
derstanding [8], [43]. In this work, we extract image struc-
tural information as the spatial distribution of local inter-pixel
relationship patterns.

After local contrast normalization, we obtain the normalized
luminance image /. Assuming that the local patch of image I can
be characterized by joint distribution of normalized luminance
values of successive pixels in this patch
(%)

T =t(ges 90, 915 gP-1)

where g, is the normalized luminance value of the center pixel of
the local patch, {go, g1, ..., gp—1} are the normalized luminance
values of the P circularly symmetric neighbourhood.

Without losing information, we substrate the center pixel
value from the neighborhood

(6)

Analogous to [44], [45], we assume that the normalized lumi-
nance value of center pixel to be statistically independent of the
differences between neighbors and center pixel, which allows
for the factorization of the joint distribution

T =1t(ger 9o — Ges 91 — Yo -y GP—1 — ge)-

(N

where the first term ¢(g..) is the marginal distribution of normal-
ized luminance coefficients over the whole image I. The second
term t(go — ge, 91 — Gey---» Gp—1 — ge) 18 the joint distribution
of differences which describes local inter-pixel relationship. By
keeping the signs of the differences, Ojala et al. [45] proposed
the LBP operator to describe this joint distribution

T = t(g.)t(90 — Ges 91 — Ger -, GP—1 — Ge)

t(s(90 — ge)s s(g1 — ge)s s 8(gP-1 = g¢)) ®)
where the thresholding function s(+) is defined as
s(g gc)_{O, gi — ge < 0. ©)

By assigning a binomial factor (27) for each neighbor from
(8), the LBP code of one pixel is deduced as [45]

S

i=0

LBPpp = — 9c)2 (10)

where P is the number of neighbors and R is the radius of the
neighborhood. Given an image of size M x N, after the LBP
code of each pixel is identified, the structural histogram can be
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M N
SH(k) = ﬁ SN H(LBP (i) k) k € [0, K]

i=1j=1

)

fla.) = {(1) oy (12)

otherwise

where K is the maximum value of LBP patterns. The uniformity
measure U/ is calculated as the number of bitwise transitions

U(LBPp )= |s(gr-1 —9gc) — s(g0 — g¢)||
P-1
+ 3 lls(gi = ge) = s(gi1 — go)ll. (13)
i=0

It was observed that certain LBP patterns can capture the fun-
damental structural properties, composing of the vast majority
of LBP patterns in natural images (sometimes over 90%) [45].
These certain LBPs share with the same attribute: the num-
ber of spatial transitions is limited by two (U < 2), which are
referred as the uniform LBP patterns. To achieve rotation invari-
ance, a locally rotation invariant uniform LBP operator can be
defined as

BRIy {zf’_& s(gi —gc), it U(LBPpg) <2

14
P+1, else (14

where superscript riu2 refers to the rotation invariant “uniform”
patterns with I/ value less than 2. The rotation invariant uniform
LBP would have P + 2 distinct patterns (P + 1 for the different
uniform patterns and 1 for the non-uniform pattern).

The LBP patterns effectively detect image primitive mi-
crostructures, such as edges, lines, corners and spots. For ex-
ample, in the case of LBFs 1, (0) stands for bright spot, (8)
denotes flat area or dark spot, and (1-7) represents edges of
varying positive and negative curvature [45]. The introduction
of distortion may shift the LBP pattern from one type to another.
For example, blocking artifacts caused by JPEG compression
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Impact of distortions on structural histogram. (a) Average structural histograms on LIVE. (b) Average structural histograms on MLIVE.

may shift a flat pattern to an edge pattern, while blurring effect
can change an edge pattern to flat pattern. Gaussian noise may
alter the LBP pattern in a random way.

Therefore, we extract the spatial distribution of LBP patterns
as an effective feature for quality perception. Since LB P}i%? has
a fixed set of discrete patterns (0 — P + 1), no quantization is
required, but the different patterns are directly mapped into a his-
togram of P + 2 bins. By generating the occurrence histogram,
we effectively employ the statistical property of the structural
information: the LBP operator detects microstructure whose un-
derlying distribution is characterized by the histogram [45]. In
this work, we set P = 8, thus there would be 10 bins for the
structural histogram. Fig. 2(a) shows the average structural his-
tograms of reference images and distorted images with five dis-
tortion types in LIVE database [i.e., WN, GB, JPEG, JP2K, and
simulated fast fading (FF)]. The average structural histograms
are generated by calculating the mean of histograms of all the
images with the same distortion type. Fig. 2(b) shows the av-
erage structural histograms of reference images and distorted
images with two kinds of multiple distortions in MLIVE
database [i.e., GB + JPEG (Blur followed by JPEG compres-
sion), GB + WN (Blur followed by white Gaussian noise)].
As can be seen in Fig. 2, different distortions alter the struc-
tural histograms in their own characteristic ways. And structural
histograms are effective to describe the impact of both single
distortion and multiple distortions.

C. The Luminance Histogram

The HVS is also highly sensitive to luminance change of
an input scene, which might cause visible distortions [12],
[46]. Although local contrast normalization smoothes the lumin-
ance range in a local patch, the information of global luminance
variation can still be manifested by the normalized luminance
image I. Thus, we extract the luminance feature from 1.

Existing studies on NSS revealed that the normalized lumi-
nance coefficients of natural images follow a Gaussian-like dis-
tribution [47]. The studies [22], [26] fit a generalized Gaussian
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Fig.3. Impactof distortions on luminance distribution. (a) Average luminance
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distribution (GGD) to the coefficients and used the GGD param-
eters as perceptual features. In this work, we directly employ
the histogram to represent the image luminance information. It
is advantageous to use the nonparametric histogram instead of
the parametric GGD fitting as the quality aware features. First,
it frees us from making any, possibly misguided, assumptions
about the underlying feature distribution. Second, it constitutes
a more accurate representation to avoid any fitting error. Third,
it is more computationally efficient to calculate the histogram.
Moreover, after local contrast normalization, the resultant nor-
malized luminance coefficients form a symmetric distribution
centered at 0. To reduce the histogram range, we take the mag-
nitude operation before calculating the luminance histogram

TG.j) = [1G.9)]

LH =

15)

(16)

2461

®)

@

Fig. 4. Validation the independence assumption by approximating the joint
distribution by the factorized marginal distribution. (a) The joint distribu-
tion ¢(gc, g0 — gc) which represents the concurrence of horizontally adja-
cent pixels. (b) The average error produced by factorization of ¢(g., go — gc)
into t(gC) and t(gU —Ye )

Fig. 3(a) shows the average luminance histograms of the ref-
erence images and distorted images with five distortion types
in LIVE database. Fig. 3(b) shows the average luminance his-
tograms of the reference images and distorted images with two
kinds of multiple distortions in MLIVE database. As shown in
this figure, different distortion types show apparently different
luminance changes. For example, the luminance distribution of
WN is more uniform as WN introduces random disturbs, while
JP2K/GB/FF make the distribution more Laplacian-like with
high peak and small tail as they reduce high frequency com-
ponents in images. The distribution of JPEG distorted images
exhibits several peaks that are caused by the blocking artifacts.
The distinct distribution changes caused by different distortion
types indicate that the luminance histograms are effective to
reflect the quality variation. We also observe that GB + JPEG
makes the distribution more peaked as there is blurring effect
for both GB and JPEG, while the luminance distribution of GB
+ WN resembles that of clean images since GB and WN have
counter-impact on this distribution. In this case, the structural
histogram may be more quality-relevant than the luminance
histogram.

D. Analysis of Two Feature Sets

In the previous subsection, we have made the assumption that
the marginal distribution of normalized luminance coefficients
is statistically independent of the differences between neighbors
and center pixel. First, we validate the feasibility of the inde-
pendence assumption by approximating the joint distribution
by the factorized marginal distribution. As a simplification of
(7), we consider the case of one neighbor

t(ges 90 — ge) = t(ge)t(go — ge)- (17

Fig. 4(a) shows the average of distributions ¢(g., go — g.)
computed from all the images in LIVE database [48]. Fig. 4(b)
shows the average error between ¢(g., go — ¢.) and t(g.)t(go —
g ). As shown in Fig. 4, the average error is relatively small in
proportion to the average distribution which confirms the ratio-
nality of the independence assumption. Since the structural his-
togram is derived directly from the joint difference distribution,
we can conclude that the structural histogram and luminance
histogram are statistically independent.
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Image samples to show the complementary of structural and luminance information. (a) Image with DMOS = 68.99. (b) Image with DMOS = 7.23.

(c) Image with DMOS = 75.74. (d), (e), and (f) are the structural and luminance histograms of images in the first row.

In Fig. 5, we provide a few concrete examples to show the
complementary of structural and luminance features for qual-
ity assessment. Fig. 5(a) and (c) are images with low quality,
and their differential mean opinion scores (DMOS) are 68.99
and 75.74, respectively. Fig. 5(b) is a high-quality image with
DMOS of 7.23. Their structural and luminance histograms are
shown in the second row. We compare Fig. 5(d) with Fig. 5(e)
and find that these two images share similar luminance distri-
bution, which indicates that the luminance feature cannot dis-
tinguish the distortion differences between these two images.
By contrast, their structural distributions are quite different and
provide valuable information for quality estimation. The ringing
and blurring artifacts introduced by JP2K to Fig. 5(a) can be well
captured by its structural histogram. The opposite phenomenon
is observed when comparing Fig. 5(e) with Fig. 5(f). These two
images share the similar structural distribution, which shows
the ineffectiveness of structural feature in this case. Conversely,
their luminance histograms are disparate enough to discrimi-
nate their different quality levels. Hence, we use both struc-
tural and luminance features together in this study, since they
are mutually complementary for quality evaluation task. The
experimental comparison in Section III-B2 also validates this
conclusion.

We investigate the quality awareness of NRSL features by per-
forming t-SNE algorithm [49]. t-SNE is an unsupervised nonlin-
ear dimension reduction method that converts high-dimensional
data to two-dimensional data that can be visualized in a scat-
terplot. It can well preserve the significant structure of high-
dimensional data, such that similar data points in the high-
dimensional feature space tend to lie close together in the low-
dimensional embedding. Fig. 6 shows the 2D embedding of ex-
tracted features of NRSL, where each dot represents one image
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Fig. 6. t-SNE 2D embedding of the NRSL feature space on LIVE database.
(a) is color-coded by distortion type. (b) is color-coded by DMOS range.

in the LIVE database, and x- and y-axis denote their coordi-
nates in the 2D plane. Fig. 6(a) is color coded by distortion
type, and Fig. 6(b) is color coded by DMOS range. As shown in
Fig. 6(a), WN and JPEG are well grouped and separated from
other distortions. By contrast, images corrupted by JP2K, GB,
and FF tend to mix together. This seems reasonable as both
JP2K and GB introduce the blurring artifacts to images, and FF
is actually a multiple distortion of the combination of JP2K and
transmission errors. The same or similar artifacts introduced by
the three distortion types make them cluster together in the fea-
ture space. Although it is not a necessary requirement for good
BIQA feature to handle the distortion classification problem,
Fig. 6(a) shows that the proposed feature set can also be used
to identify WN and JPEG distortion types. From Fig. 6(b), we
can see that images with similar DMOS values are clustered
together, no matter they are from one specific distortion type or
across different distortion types. Such observation indicates that
the proposed features are valuable for both distortion-specific
and general purpose BIQA tasks.
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E. Regression Model for Quality Prediction

SVR is widely adopted to learn the mapping function for fea-
ture pooling from the feature space to quality measure [26], [32],
[50]. Considering a set of training data {(z1,v1), ..., (x1,y1)},
where x; € R" is the extracted quality aware feature and y; is
the corresponding DMOS. Given parameters C' > 0 and € > 0,
the standard form of SVR is represented as [51]

! 1
: 1 7 .
wrgugng* i w-l—C{iz;{i-i-;fz‘ } (18)
subjectto  w’ ¢(x;) +b—y; < e+ (19)
yi—w' ¢a;) —b< e+ (20)
&6 >0i=1,...,1 21

where K (z;, z;) = ¢(x;)" ¢(x;) is the kernel function. We use
the radial basis function (RBF) kernel with the kernel function
of K(x;,x;) = exp(—v||z; — x; |#) in this work.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Experiment Protocol

1) Database Description: The comparison experiments are
conducted on seven subjective image databases. Four of them
are traditional synthetically-distorted image databases (i.e.,
LIVE [48], CSIQ [52], TID2013 [53], MLIVE [54]), which
are generated by introducing graded simulated distortions onto
high-quality photographs. The most commonly simulated dis-
tortions are JP2K, JPEG, WN and GB. LIVE, CSIQ and
TID2013 mostly contain images corrupted by a single type of
distortion. MLIVE contains images simultaneously distorted
by two types of distortions. The remaining three databases are
the newly emerging naturally-distorted image databases, which
contain realistic distortions generated during image acquisition,
processing and storage of devices (i.e., BID [55], CLIVE [56]
and CID2013 [57]). For the naturally-distorted images, there are
no reference images with perfect quality, and FR/RR methods
are not applicable in this scenario. Also there is no definite dis-
tortion category for each image since authentic distortions are
generally diverse, mixed and multipartite. These databases are
summarized as follows.

1) The LIVE database includes 29 reference images and 779
distorted images corrupted by five types of distortions:
JP2K, JPEG, WN, GB, and FF. Subjective quality scores
are provided in the form of DMOS ranging from 0 to 100.

2) The CSIQ database includes 30 reference images and
866 distorted images corrupted by six types of distor-
tions: JPEG, JP2K, WN, GB, pink Gaussian noise (PGN),
and global contrast decrements (CTD). Subjective quality
scores are provided in the form of DMOS ranging from
Oto 1.

3) The TID2013 database includes 25 reference images and
3000 distorted images corrupted by 24 types of distortions:
#01 WN, #02 WN in color components, #03 spatially cor-
related WN, #04 masked noise, #05 high-frequency noise,
#06 impulse noise, #07 quantization noise, #08 GB, #09
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image denoising, #10 JPEG, #11 JP2K, #12 JPEG trans-
mission errors, #13 JP2K transmission errors, #14 non
eccentricity pattern noise, #15 local blockwise distortion
of different intensity, #16 mean shift, #17 contrast change,
#18 change of color saturation, #19 multiplicative Gaus-
sian noise, #20 comfort noise, #21 lossy compression of
noisy images, #22 image color quantization with dither,
#23 chromatic aberrations and #24 sparse sampling and
reconstruction. Subjective quality scores are provided in
the form of mean opinion score (MOS) ranging from
0to9.

4) The MLIVE database includes 15 reference images and
450 distorted images corrupted by two types of multiple
distortions: GB + JPEG and GB + WN. Subjective quality
scores are provided in the form of DMOS ranging from
0 to 100.

5) The BID (realistic blur image database) database includes
586 blurred images taken under a variety of lighting con-
ditions and exposure time. It presents typical blurring
scenarios in practical applications, such as out-of-focus,
simple motion, complex motion and their combination.
Subjective quality scores are provided in the form of MOS
ranging from O to 5.

6) The CLIVE (LIVE in the wild image quality chal-
lenge database) database includes 1162 distorted im-
ages captured using typical real-world mobile cameras.
It contains various authentic image distortions, such as
low-light blur and noise, motion blur, overexposure, un-
derexposure, compression errors and their combination.
Subjective quality scores are provided in the form of MOS
ranging from O to 100.

7) The CID2013 database includes 474 distorted images cap-
tured using various digital cameras. The database consists
of six sets (I-VI) and each set covers around 80 images
captured under six typical scenes. It represents the typi-
cal distortions that depend on camera sensor type, optics
and built in image processing pipeline. Subjective qual-
ity scores are provided in the form of MOS ranging from
0 to 100.

2) Performance Evaluation Criteria: A monotonic logis-

tic function is used to provide a nonlinear mapping between
objective scores and subjective scores [58]

1 1
flo) =5 (2 exp(fa(z — f3))
where x is the original IQA score, f(x) is the fitted IQA
score, 3;(j = 1,2,...5) are regression parameters trained per
database.

The performance of IQA methods are evaluated by three
different criteria: Spearman rank order correlation coefficient
(SRCC) for prediction monotonicity, Pearson linear correla-
tion coefficient (PLCC) for prediction accuracy and root mean
squared error (RMSE) for prediction error. The latter two criteria
were calculated after the monotonic logistic mapping.

NRSL was compared with nine state-of-the-art BIQA mod-
els, including NIQE [22], BIQI [27], DIIVINE [28], BLI-
INDS2 [25], CORNIA [34], BRISQUE [26], GMLOG [32],

> +Bix+ G5 (22)
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Fig. 7. Parameter choice. (a) The performance of NRSL in terms of SRCC
vs. the number of bins of luminance histogram. (b) The performance of NRSL
in terms of SRCC versus constant cv.

NR-GLBP [59] and NFERM [33]. We also include the perfor-
mance of FR-IQA methods PSNR and SSIM [8] for reference.

B. Implementation Details

1) Parameter Choice: There are two free parameters in the
proposed NRSL model. The first one is the number of bins of
luminance histogram. Generally, histograms with small number
of bins fail to provide enough discriminative information about
the distributions. By contrast, for histograms with too many
bins, the average number of entries of each bin would be too
small, which may cause the histograms sparse and unstable. To
investigate the effect of bin number on the quality prediction
performance, we try several choices of the bin number and
observe SRCC performance on each database. The results are
plotted in Fig. 7(a).

We can see that the bin number of 10 results in high and
stable performance across all seven databases. Therefore, in
our implementation, we set the number of bins of luminance
histogram to 10.

Another free parameter to be determined is the « value in
(4). Apart from ensuring the numerical stability, the constant «
also plays an important role in mediating the contrast satura-
tion in low contrast regions. Fig. 7(b) plots the SRCC curves
against o by applying NRSL to the seven benchmark databases.
We can see that for a wide range of choices for o, NRSL
achieves satisfactory performance on all the databases except
CID2013sub. The reason may be that there is much differ-
ence among images in CID2013 database in terms of lumi-
nance and contrast (e.g., some are captured in outdoor daylight,
while others are indoor scenes with black background). There-
fore, the best contrast normalization factor may vary from one
scene to another. In the implementation, we set o« = 0.01 for all
databases.

In addition, both the statistical structural and luminance fea-
tures are calculated at three scales to account for the variations
of viewing distance and image resolution [9], [60]. Besides the
original image scale, the coarser scale is constructed by low-pass
filtering and downsampling the image by a factor of 2.

2) Examination of Two Feature Sets: In Section II-D, we
have provided some qualitative analysis on the complementary
of the extracted structural and luminance features. In this part,
we present the experimental comparison by using only one of the
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TABLE I
SRCC COMPARISON ON LIVE DATABASE TO VALIDATE THE COMPLEMENTARY
OF STRUCTURAL AND LUMINANCE INFORMATION

IQA model JP2K JPEG WN GB FF ALL
NRSL_S 0.940 0.953 0.962 0.928 0.863 0.935
NRSL_L 0.858 0.920 0.977 0.891 0.730 0.871
NRSL 0.943 0.960 0.984 0.959 0.880 0.952

two feature sets to validate our analysis. Specifically, we tested
the performance on LIVE database by splitting the database into
training and testing subsets 1000 times. 80% of the distorted im-
ages are used for training and the rest for testing. There is no
content overlap between these two subsets. SRCC results on
LIVE database [48] are shown in Table I, where NRSL_S de-
notes the model which uses only structural feature and NRSL_L
denotes the model using luminance feature.

From Table I, we can see that structural feature is more ef-
fective for distortion types of JP2K, JPEG, GB and FF, as such
distortions greatly interfere the structural information of im-
ages; while luminance information are more effective for WN
distortion. Moreover, the combination of these two feature sets
always delivers higher performance than each feature set under
all the cases.

C. Overall Performance on Individual Databases

First, we evaluate the overall performance of competing
BIQA models on each benchmark database. As in many pre-
vious works [24], [32], [33], for CSIQ [52] and TID2013 [53]
databases, we only test the four distortions that also appear in
LIVE database (i.e., JP2K, JPEG, WN, GB). These four distor-
tion types are also the most commonly encountered distortions
in practical applications. We also exclude the 25th reference
image with its distorted versions from TID2013 [53] as it is
not a natural image. We denote the selected databases as CSIQ-
sub and TID2013sub, which include 600 and 480 distorted im-
ages, respectively. The performance on the whole CSIQ and
TID2013 databases will be presented in Section III-D. Since
NRSL adopts SVR learning for quality estimation, we need to
divide the database into training and testing subsets. For the
four synthetically-distorted image databases (i.e., LIVE, CSIQ-
sub, TID2013sub, MLIVE), distorted images are generated by
post-processing the reference images. To achieve content inde-
pendence between training and testing sets, distorted images of
80% of the reference images are used for training, and the rest
are used for testing. For BID and CLIVE databases, there are
no reference images. Also the images are quite different from
each other in terms of content properties. Thus, we randomly
split the databases into two sets: 80% for training, and 20%
for testing. The training-testing split is repeated 1000 times and
the median performance is reported. The CID2013 database can
be grouped into two parts since Sets I-III and Sets IV-VI are
rated using different subjective evaluation protocols. Sets IV-VI
are used in this work for comparing the performance of BIQA
methods and denoted as CID2013sub. Also, each Set includes
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TABLE II
PERFORMANCE COMPARISON OF 12 IQA MODELS ON 7 BENCHMARK DATABASES

LIVE (779) CSIQsub (600) TID2013sub (480) MLIVE (450)
IQA model SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE
PSNR 0.884 0.882 12.808 0.928 0.853 0.146 0.928 0.918 0.555 0.725 0.815 10.934
SSIM [8] 0.939 0.934 9.738 0.923 0.933 0.101 0.918 0.939 0.481 0.901 0.925 6.969
NIQE [22] 0.909 0.909 11.376 0.883 0.892 0.126 0.819 0.831 0.779 0.793 0.860 9.437
BIQI [27] 0.821 0.838 14.874 0.819 0.873 0.137 0.818 0.856 0.722 0.883 0.905 7.833
DIIVINE [28] 0.912 0.913 11.168 0.883 0.905 0.118 0.882 0.904 0.596 0.866 0.898 8.257
BLIINDS2 [25] 0.930 0.936 9.515 0.904 0.932 0.101 0.876 0.905 0.597 0.886 0.903 8.125
CORNIA [34] 0.943 0.946 8.812 0.890 0.926 0.105 0.893 0.925 0.532 0.899 0.915 7.586
BRISQUE [26] 0.943 0.947 8.794 0.903 0.934 0.099 0.900 0.925 0.533 0.900 0.922 7.273
GMLOG [32] 0.950 0.954 8.180 0.924 0.947 0.090 0.931 0.943 0.464 0.831 0.871 9.197
NR-GLBP [59] 0.938 0.943 9.075 0.916 0.948 0.089 0.920 0.939 0.479 0.891 0.904 7.932
NFERM [33] 0.938 0.942 9.101 0.929 0.952 0.084 0.929 0.951 0.436 0.899 0.919 7.413
NRSL 0.952 0.956 8.018 0.930 0.954 0.084 0.945 0.959 0.397 0.932 0.946 5.943

BID (586) CLIVE (1162) CID2013sub (233) Weighted Average
IQA model SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE SRCC PLCC
NIQE [22] 0.457 0.467 1.100 0.453 0.509 17.394 0.713 0.715 16.224 0.687 0.713
BIQI [27] 0.573 0.598 0.997 0.532 0.557 16.828 0.681 0.684 16.929 0.707 0.735
DIIVINE [28] 0.610 0.646 0.947 0.597 0.627 15.767 0.582 0.608 18.419 0.755 0.779
BLIINDS2 [25] 0.532 0.560 1.029 0.463 0.507 17.419 0.380 0.389 21.378 0.705 0.731
CORNIA [34] 0.625 0.646 0.949 0.618 0.662 15.158 0.687 0.718 16.159 0.780 0.807
BRISQUE [26] 0.581 0.605 0.990 0.607 0.645 15.450 0.759 0.762 15.032 0.778 0.801
GMLOG [32] 0.543 0.571 1.023 0.595 0.620 15.800 0.599 0.624 18.128 0.761 0.782
NR-GLBP [59] 0.628 0.654 0.942 0.612 0.634 15.622 0.625 0.656 17.510 0.780 0.800
NFERM [33] 0.586 0.608 0.986 0.540 0.570 16.641 0.600 0.656 17.517 0.757 0.780
NRSL 0.638 0.663 0.931 0.631 0.654 15.317 0.817 0.816 13.399 0.809 0.825

six scenes. Images from the same scene are quite similar to each
other, and different from images from other scenes in terms of
content properties. Thus, we use the leave-one-out strategy by
training on images from five scenes and testing on images from
the remaining scene. This is repeated until all the images have
the predicted scores. Then we calculate the correlation between
MOS and predicted scores. Since the training and testing sets
are fixed in this scheme, the experiment is conducted only once.
This experimental setup on CID2013 is also in line with several
recent studies [61], [62]. There is one purely black image in
CID2013 database (IS_VI_CO01_D14.JPG) and several BIQA
methods fail to extract effective features on it, thus we also
excludes this image to form the CID2013sub with 233 images.

The prediction performance measured by SRCC, PLCC, and
RMSE criteria is listed in Table II. For each criteria, the best
two BIQA models are highlighted in boldface. Moreover, in
order to provide an evaluation of the overall performance of the
competing IQA models, we also present their weighted-average
SRCC, PLCC results over all seven databases and the weight
assigned to each database is in direct proportion to the number
of distorted images in that database.

Form Table II, it can be observed that NRSL performs con-
sistently well on all the benchmark databases. Particulary, it
delivers higher performance than other competitors on all seven
databases. On the contrary, for other BIQA models, they may
work well on some databases but fail to deliver good results
on other databases. For example, CORNIA and BRISQUE can
get encouraging results on LIVE and MLIVE, but they per-
form relatively poorly on CSIQsub and TID2013sub databases.

GMLOG archives quite good performance on LIVE, CSIQ-
sub and TID2013sub databases, but it performs rather poorly
on MLIVE database. Therefore, we can conclude that objec-
tive quality scores predicted by NRSL are in higher agreement
with subjective ratings than all the other BIQA models exam-
ined. However, the performance of all BIQA methods drops
significantly on naturally-distorted databases compared with
traditional simulated databases. This is to be expected since
authentic distortions are generally more complex, diverse and
multipartite, and thus the visual quality estimation requires more
efforts in the community. The exsiting method NR-GLBP [59]
also uses LBP for feature extraction by manually selecting sev-
eral thresholds to calculate the generalized LBP on four LOG
filtered images to form the quality aware features. However,
since the LBP mechanism only encodes the sign of the pixel-
wise difference between one pixel and its neighbors, it fails
to capture the impact of luminance and contrast distortions
as the magnitude information is lost. Moreover, the manually
selected thresholds may not well accommodate images with
different content properties. On the contrary, we effectively
combine the complementary features of luminance and struc-
tural histograms in our method. The bounded performance of
LBP can be improved by the luminance histogram and their
combination further advances the quality prediction accuracy.
The experimental results in Table II show that our method
delivers better performance than NR-GLBP on all the seven
benchmark databases. Also, our method has a lower feature di-
mensionality and faster computation time, as shown in Table VII
in Section III-F.
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TABLE III
STATISTICAL SIGNIFICANCE TEST

DB NIQE BIQI DIIVINE BLIINDS2

CORNIA BRISQUE GMLOG NR-GLBP NFERM

LIVE 1
CSIQsub 1
TID2013sub 1
MLIVE 1
BID 1
CLIVE 1
CID2013sub 1

—_ e e e e e
—_ e e
—_ e e e e

1
1
1
1
1
1
1

—_ e e

0
0
1
1
1
1
1

—_ e e e e

1
0
1
1
1
1
1

1(— 1) indicates NRSL is statistically better (worse) than the method in the column. 0 indicates NRSL is statistically equivalent to the method in the column.

To further prove the superiority of NRSL over the competing
BIQA methods, we calculate the statistical significance between
NRSL and other BIQA methods. For the first six databases, ex-
periments are conducted by splitting the database into training
and testing sets 1000 times and the median performance is re-
ported. Thus, we conduct the two sample t-test between the pair
of SRCC values of 1000 train-test loops, which measures the
equivalence of the mean values of two independent samples.
For the CID2013sub database, experiments are conducted by
leave-one-subset-out strategy, and predicted quality scores at
all subsets are put together before calculating the final perfor-
mance. Thus, we conduct the two sample F-test to the residuals
of two methods, which measures the equivalence of variances of
two independent samples. Both t-test and F-test are conducted
at the 5% significance level, with 1 (—1) indicating that NRSL
is statistically superior (inferior) to the compared method and
0 indicating that NRSL is statistically equivalent to the com-
pared method. The results are listed in Table III. We can see
that on TID2013sub, MLIVE, BID, CLIVE and CID2013sub,
NRSL performs statistically better than all other BIQA meth-
ods. NRSL is on par with GMLOG on LIVE, on par with
GMLOG and NFERM on CSIQsub, respectively. Generally,
NRSL achieves statistically better performance than other BIQA
methods.

D. Performance on Individual Distortion Type

Here, we evaluate the performance of competing IQA mod-
els on individual distortion type. Since there is no well defined
distortion category for naturally-distorted images, we only con-
duct experiments on the four databases with simulated distor-
tions. For BIQA models, we train on the 80% of images with
various distortion types and then test on the left 20% of images
with the specific distortion type. The SRCC comparison on four
benchmark databases are tabulated in Table IV. There are 15
groups of distorted images in the four databases. The best two
BIQA models for each distortion group are shown in boldface.
It should be noted that similar results can be obtained for PLCC
and RMSE criteria, thus we only list SRCC here for brevity.

From the results presented in Table IV, we can see that NRSL
is among the best two metrics 12 times, followed by NFERM
(7 times) and GMLOG (5 times). We also calculate the weighted
mean and standard deviation of competing IQA models across
all distortion groups. Among them, NRSL is with the high-
est mean and the lowest standard deviation across different

groups. Thus, we can draw the following conclusions. In general,
when distortion is of a specific type, NRSL performs the best
among all BIQA models. NFERM, NR-GLBP, and BRISQUE
can also achieve acceptable results. Moreover, although GM-
LOG delivers promising results for singly-distorted images,
its performance deteriorates significantly when tested on
multiply-distorted images. NRSL achieves consistently better
performance on most commonly encountered distortion types.

Furthermore, in order to validate the generalization abil-
ity of NRSL to uncommon distortion types, we also compare
NRSL with other five best performing BIQA models through
1000 train-test experiments on the whole CSIQ and TID2013
databases. The SRCC values of different methods are presented
in Table V. From this table, we can observe that NRSL is among
the best two metrics 20 times, followed by NFERM (16 times)
and GMLOG (11 times).

E. Cross-Database Validation

In the previous experiments, the training and testing im-
ages are from the same database. In this subsection, we test
the generalization capability of learning based BIQA models
through cross-database validation. We train the BIQA models
using all the images from one database and test the perfor-
mance on another database. Since learning-based BIQA models
require example images of same or similar distortions for train-
ing, here we only conduct cross-database validation on the three
singly-distorted databases (i.e., LIVE, CSIQsub, TID2013sub)
as they share similar distortion types (i.e., JP2K, JPEG, WN,
GB, FF). The SRCC results of cross-database validation on
three databases are provided in Table VI.

It can be seen that NRSL performs quite well in this scenario.
It delivers the best performance in 5 out of 6 cases, which has
demonstrated the database independency and robustness of the
proposed NRSL method.

E. Computational Complexity

In many practical applications, it is much desired to have a
low-complexity BIQA method which can estimate image qual-
ity in real-time. Therefore, we evaluate the computational com-
plexity and running cost of all competing methods in Table VII.
Experiments are performed on a ThinkPad T430S notebook
with Intel Core i7-3520M CPU@2.9GHz and 8G RAM. The
software platform is MATLAB R2014b (8.4) under Windows
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TABLE IV
SRCC COMPARISON OF 12 IQA MODELS ON INDIVIDUAL DISTORTION TYPES

D-Type ~ PSNR SSIM NIQE BIQI DIIVINE BLINDS2 CORNIA BRISQUE GMLOG NR-GLBP NFERM NRSL

LIVE JP2K 0903 0959 0923 0780  0.902 0.928 0.922 0.915 0.925 0.933 0937 0943

JPEG 0.891 0975 0942 0829  0.899 0.949 0.941 0.963 0.963 0.958 0964  0.960

WN 0984 0976 0972 0958  0.981 0.945 0.963 0.978 0.983 0.981 0984  0.984

GB 0.808 0960 0941 0844 0935 0.913 0.955 0.946 0.929 0.936 0909  0.959

FF 0.895 0.885 0862 0739  0.858 0.873 0.907 0.887 0.899 0.853 0.850  0.880

CSIQsub JP2K 0942 0970 0927 0815 0877 0.889 0.901 0.892 0.915 0.911 0917 0921

JPEG 0902 0957 0.883 0856  0.887 0.916 0.886 0918 0.936 0.926 0927 0937

WN 0940 0.823 0.837 0.842  0.901 0.899 0.797 0.919 0.939 0.925 0934 0955

GB 0935 0974 0906 0.837  0.898 0.919 0.907 0.913 0.906 0.921 0924 0926

TID2013sub JP2K 0905 0952 0906 0.848  0.892 0.916 0.900 0.905 0.927 0.927 0.938  0.940

JPEG 0931 0932 0879 0855  0.867 0.871 0.869 0.878 0.902 0.917 0.896  0.920

WN 0948 0891 0.842 0.865  0.905 0.753 0.730 0.884 0.948 0.856 0939  0.928

GB 0968 0967 0841 0890 0937 0.902 0.914 0.930 0.916 0.943 0928 0958

MLIVE GB+JPEG 0736 0.898 0.899 0.881  0.864 0.892 0.904 0.905 0.865 0.897 0919  0.928

GB+WN 0743 0912 0833 0883 0877 0.884 0.900 0.900 0.817 0.905 0.887  0.937

wmean  0.883 0934 0893 0849  0.897 0.899 0.896 0.916 0.913 0.919 0923 0.938

wstd 0.080 0.043 0042 0048  0.031 0.041 0.053 0.027 0.043 0.031 0.030  0.023

TABLE V
SRCC COMPARISON ON THE WHOLE CSIQ AND TID2013 DATABASES
CSIQ (866) TID2013 (3000)
BIQA model WN JPEG JP2K PGN GB CTD ALL  #1 # #3 #4 #5 #6 #7 #3 #9
CORNIA [34] 0763 0842 0869 0567 0854 0533 0733 0550 0209 0717 0360 0797 0585 0727 0840 0.721
BRISQUE [26]  0.682 0.846 0817 0743 0808 0396 0740 0706 0523 0776 0295 0836 0.802 0682 0861  0.500
GMLOG [32]  0.804 0864 0.890 0774 0857 0562 0.804 0748 0591 0769 0491 0.875 0693 0.833 0878 0.721
NR-GLBP[59] 0.657 0.879 0858 0787 0.862 0.697 0804 0664 0466 0759 0081 0728 0.620 0728 0.827 0.721
NFERM [33] 0731 0.890 0908 0797 0879 0.628 0810 0851 0520 0.846 0.521 0.894 0857 0785 0.888 0.741
NRSL 0.810 0903 0912 0836 089 0.659 0851 0813 0457 0.867 0393 0902 0787 0700 0.886 0.795
TID2013 (3000)
BIQA model #10  #11 #12 #13 #14 #15  #16  #17 #18 #19  #20  #21 #22  #23  #24  ALL
CORNIA [34] 0806 0.800 0.595 0.654 0157 0016 0.177 0262 0170 0407 0541 0.696 0.649 0.689 0874  0.629
BRISQUE [26] 0790 0779 0254 0723 0213 0197 0217 0079 0113 0674 0198 0627 0849 0724 0811 0.567
GMLOG [32]  0.823 0872 0400 0.731 0.190 0318 0.119 0224 -0.121 0701 0202 0.664 0.886 0.648 0915 0.679
NR-GLBP[59] 0.844 0.867 0.440 0594 0226 0204 0.105 0123 -0.023 0580 0447 0507 0762 0748 0.830  0.560
NFERM [33] 0797 0920 0381 0718 0176 0081 0238 0056 -0.029 0762 0206 0401 0.848 0.684 0878  0.652
NRSL 0818 0.891 0345 0805 0117 0323 0136 0194 -0.110 0753 0434 0751 0866 0.694 0887  0.661
TABLE VI
SRCC COMPARISON ON CROSS-DATABASE VALIDATION

Train DB Test DB NIQE  BIQI  DIIVINE  BLINDS2 CORNIA  BRISQUE GMLOG  NR-GLBP  NFERM  NRSL
LIVE CSIQsub 0869  0.762 0.871 0.901 0.898 0.890 0.897 0.911 0.907 0.917
TID2013sub  0.811  0.821 0.865 0.855 0.879 0.878 0.907 0.916 0.913 0.916
CSIQsub LIVE 0905  0.755 0.801 0.894 0.920 0.919 0.903 0.917 0.918 0.921
TID2013sub 0811  0.738 0.862 0.765 0.852 0.874 0.879 0.893 0.904 0.921
TID2013sub LIVE 0905  0.742 0.828 0.894 0.907 0.877 0.889 0.899 0.838 0.896
CSIQsub 0869  0.669 0.823 0.864 0.859 0.861 0.794 0.821 0.863 0.875

7 Home Premium. The MATLAB source codes of all the com-
peting IQA models are obtained from original authors except
for NR-GLBP, which is implemented by ourselves according
to [59]. The feature extraction time consumed by each IQA
model for estimating the quality of one 512 X 512 image is
listed in the second column. Assuming NV is the number of pix-
els and d is the window size for local normalization, we can

observe that the proposed method NRSL is quite efficient with
the time complexity of O(N(d? 4 10)), where O(d*N) is for
the local contrast normalization, O(8N) is for the LBP calcula-
tion (8 is the number of neighbors for LBP), and O(2N) is for
calculation of the two histograms. More specifically, it can pro-
cess 10 images per second, which meets the time requirement
in most image processing applications.
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TABLE VII
COMPUTATIONAL COMPLEXITY AND RUN-TIME
COMPARISON OF BIQA MODELS

BIQA Time(s) Time complexity [32]
model
NIQE 0.23 O(d? N') d: window size
BIQI 0.05 O(N)
DIIVINE 15.52 O(N (log(N) + m? + N + 392b))

m: DNT neighborhood size; b: 2D histogram bin

number

BLIINDS2 61.39 O((N/d?)log(N/d?)) d: window size
CORNIA 245 O(d? K N) d: window size; K: codebook size
BRISQUE 0.08 O(d* N') d: window size
GMLOG 0.06 O(N (h + k)) h: filter size; k: probability matrix size
NR-GLBP 1.65 O(4N (h + 5t)) h: filter size; t: number of threshold
NFERM 54.03 O(d* N log(N)) d: window size of AR model
NRSL 0.11 O(N (d* + 10)) d: window size

IV. CONCLUSION

In this paper, we have proposed a novel blind image qual-
ity assessment algorithm based on structural and luminance
information. Unlike previous BIQA models normally generate
features by fitting transformed image coefficients to specific
probability distribution, in the proposed method, we utilize two
statistical distributions on normalized luminance map to charac-
terize the HVS-sensitive features. After local contrast normal-
ization, the structural and luminance histograms are extracted
to construct the image quality aware features. The structural
histogram captures the influence of various distortions on the
inter-pixel relationship patterns, while the luminance histogram
describes the global variation pattern of pixel-wise luminance
value. Our research findings suggest that complementary infor-
mation of structural and luminance features plays an important
role for quality assessment tasks. Extensive experimental re-
sults on seven large-scale public IQA benchmark databases have
demonstrated that the proposed method NRSL is highly compet-
itive to the state-of-the-art BIQA methods in terms of prediction
accuracy, distortion consistency, and database independency. In
the future, we would like to extend NRSL to account for dis-
tortions in chromatic component and try to build a blind quality
assessment metric for video sequences.
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